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Starting with ord (2) = {3, 4, 6} and observing from 
Table 1 that ord- (4)= {5}, we get 

ord ÷ (4) = 2 ord- (4) w 4 ord- (2) w 8 ord- (0) 

={8, 10, 12}. 

Hence 

ord (4) = ord ÷ (4) word-  (4) 

= {5, 8, 10, 12}. 

This result is consistent with the enumeration of 
the four-dimensional space groups given by Brown 
et al. (1978). 

Continuing in this fashion one can generate the 
values for dimensions n-< 100 using Table 1 alone. 
We have done this for n-< 23 in Table 2. 

It is interesting to observe that the first example 

where the maximum of the allowable new orders does 
not increase occurs in going from dimensions 20 to 22. 

It is a pleasure to thank the referee for numerous 
helpful suggestions and R. L. E. Schwarzenberger for 
his encouragement to write up these results. 
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Abstract 

The effects on the reciprocal space of one or more 
pseudotranslations occurring in a crystal structure are 
studied. A quantitative theory is described, which 
gives full account of the subsets of pseudonormalized 
structure factors whose mean intensity significantly 
deviates from unity. Conversely, statistical criteria are 
suggested aiming at facilitating the recognition of the 
nature of the superstructure. The theory has been 
implemented into a computer program that, from 72 
different pseudotranslational symmetries, chooses the 
most probable one, estimates the number of atoms 
suffering pseudosymmetry and renormalizes structure 
factors. 

Symbols and abbreviations 

h = (h, k,/):  vectorial index of a reflection. 
f :  atomic scattering factor. The thermal factor is 
included; anomalous dispersion is not. 
Fh, Eh: structure factor and normalized structure fac- 
tor respectively with vectorial index h. 

* Present address: 'Rudjer Bogkovir' Institute, Bijeni~ka 54, 
41000 Zagreb, Yugoslavia. 

0108-7673/85/060544-08501.50 

Cs = (R,  T~): sth symmetry operator. R~ is the rota- 
tional part, Ts the translational part. 
m" order of the space group (it coincides with the 
number of symmetry operators). 
ui: ith pseudotranslation in the unit cell. 
p: number of atoms (symmetry-equivalent included) 
whose positions are related by the pseudotransla- 
tions u. 
hi" order of the pseudotranslation ui (see § 2a). 
Fp, Ep: structure factor and normalized structure fac- 
tor relative to the p atoms. 
q: number of atoms (symmetry-equivalent included) 
whose positions are not related by any pseudo- 
translation. 
tp: number of independent atoms that generate the p 
atoms when the pseudotranslations ui and the sym- 
metry operators Cs, s = 1 , . . . ,  m, are applied. 
tq: number of independent atoms that generate the q 
atoms by application of the symmetry operators C~, 
s = l , . . . , m .  
p(r): electron density function in the unit cell. 
pp(r): electron density function corresponding to the 
p atoms. 
~tp, ~tq, ~"~p, ~q, ~ " . N - ~ , f ~  (thermal factor included) 
where the summation is extended to the tp, tq, p, q, 
N atoms respectively. 
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~o V o s,o o o ,~, ,-.tq, '-'v' ~q'  F.N--~ (fo)2 (no thermal factor 
included). 
s = sin 0/X. 
cs, ncs: centrosymmetric, noncentrosymmetric. 

1. Introduction 

A priori information, when available, facilitates crys- 
tal structure solution. Successful procedures (Karle, 
1970; Beurskens & Noordik, 1974; Main, 1976; 
Heinerman, 1977; Giacovazzo, 1983) have been 
described for the following four kinds of information: 
(a) randomly positioned atoms; (b) randomly posi- 
tioned and randomly oriented atomic groups; (c) 
randomly positioned but correctly oriented atomic 
groups; (d) correctly positioned atoms. 

Sometimes the a priori information is only 
indirectly available. For example, it is provided by 
inspection of the Patterson map or of the intensity 
distribution. Indeed, when pseudosymmetry occurs 
(a non-negligible part of the atoms approximately 
satisfies a higher symmetry than the whole structure) 
the mean intensities of the measured structure factors 
are different for distinct classes of reflexions. 

Often difficulties arise for the solution of structures 
showing pseudosymmetry. Attempts to solve such 
structures usually lead to solutions containing several 
structural images related by the pseudosymmetry. 
Hauptman & Karle (1959) suggested the E values of 
the various classes of reflections should be rescaled. 
This procedure sometimes succeeds but it proved 
unable to solve other crystal structures. Qurashi 
(1963) and Takruchi (1972) suggested the use of 
special Patterson functions and Ito (1973) attempted 
to solve structures by a special use of least-squares 
refinement. 

An important kind of pseudosymmetry occurs 
when a non-negligible amount of the electron density, 
say pp(r), fulfils a pseudotranslation u:pv(r)~- 
pp(r+u). Buerger (1956, 1959) suggested that such 
structures should be treated as the sum of a substruc- 
ture and the complement structure. Consequently, the 
reflections have to be divided into the set of substruc- 
ture reflections with high mean intensity and the set 
of superstructure reflections, giving information 
about the complement structure. From a different 
point of view Lipson & Woolfson (1952) and Rogers 
& Wilson (1953) noticed that the reflection of a sub- 
unit along a line introduces a modulation factor, 
which increases the dispersion of the intensities: 
therefore the cumulative distribution of the E values 
approximates to the characteristic cs or hypercen- 
trosymmetric cumulative functions even if the space 
group is ncs. 

More recently, some important contributions by 
Fan Hai-fu, Yao Jia-xing, Main & Woolfson (1983), 
B/Shme (1982, 1983) and Gramlich (1975, 1984) gave 
more insight into the theoretical reasons, which sug- 

gest the substructure and the superstructure reflec- 
tions should be treated differently. In particular, 
Brhme observed that substructure and superstructure 
reflections have to be described by different forms of 
the structure-factor equation so that the probabilistic 
formulas derived with the assumption that the func- 
tional form of the structure factor equation does not 
change cannot hold. 

Gramlich interpreted the mean squares of the sets 
of normalized structure factors that significantly devi- 
ate from unity in terms of correlation coefficients of 
the atom coordinates. He derived also an asymptotic 
formula, which provides a basis for the use of triplet 
phase relationships of the type 'super-sub-super' .  

In this paper we describe a new statistical approach 
that is able to obtain normalized structure factors by 
taking into account explicitly the structural regu- 
larities arising from the presence of one or more 
pseudotranslations. It will also be shown that the type 
of pseudotranslational symmetry and the percentage 
of electron density that is pseudotranslated may be 
in favourable circumstances readily guessed via 
statistics of the diffraction magnitudes. In a following 
paper (Cascarano, Giacovazzo & Luir, 1985) a prob- 
abilistic theory of triplet invariants particularly 
devoted to the solution of crystal structures having 
superstructure effects, experimental procedures and 
results will be described. 

2. Algebraic results for pseudotranslations 

(a) A general pseudotranslation may be expressed 
as  

u =  v~a//zl + v~b/ /~+ v~c /~ ,  

where a, b, c are the vectors of the unit cell, v[ and 
/z~ are integer numbers whose greatest common 
divisor is unity, and 

0 ~  v~</z~, i=  1,2,3. 

The index n of the pseudotranslation is the smallest 
integer for which nu is a lattice vector: it coincides 
with the least common multiple of/z~,/z~,/z~. In P1 
n gives the number of sites related by u to a given 
positional vector r. For example, n = 6  for u =  
1 1 2 ~a + ~b + ~c. 

If the crystal structure has symmetry higher than 
P l ,  the condition pp(r+u)=pp(r )  must also satisfy 
the space-group symmetry. In that case mn is the 
overall number of sites in the cell related to a given 
positional vector r. Then the structure-factor equation 
(for simplicity, no atom is assumed to be on a special 
crystallographic position) will be 

tp m n--1 
F h - "  ~ f j  )". ~ exp 27rihCs(rj + uu)  

j = l  s=l  v=o 

tv~tq m 
+ fj )-'. exp 27rihC~rj. 

j=tp+l s=l 
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In this case N = nmtp + mtq. As a consequence of the 
space-group symmetry, the pseudotranslations Rsu, 
s = 1 , . . . ,  m, will coexist in the unit cell. 

(b) A pseudotranslation is independent of some 
others if its presence is not the necessary consequence 
of the presence of the others. Let us suppose that 
more than one independent pseudotranslation u~, i = 
1, 2, 3 , . . . ,  are contemporaneously present in a P1 
unit cell. Then, for each atom in rj, nln2n3... 
equivalent atoms can be found, given by 

( r j - { - / / l U l ~ - V 2 u 2 - J - / : 3 u 3 ~ - . . . ) ,  0 < v i < n ~ - l .  (1') 

Then, in a space group of order m, the structure factor 
may be defined as ( N =  mtpnln2n3...+mtq) 

tp m n l - 1  nE-1 n3-1  

Fh= ~ fj ~ ~ ~ E . - .exp[27rihCs 
j = l  s = l  v l=O rE=0 v3=O 

X ( r j  "a t- / /1Ul "~- b'EU2"a t- /~3U3"at- . . . ) ]  

tp• 
tq m 

+ fj Y~ exp 27rihCsrj. (2) 
j=tp+l  s = l  

In accordance with (A1)-(A4) (Appendix), (2) may 
be written as 

where 

if j_< tp; 

Fh = fjgj, (3) 
j = l  

~ s i n  nlTrhR,u] sin n27rhRsu 2 

g~ = sin 7rhRsul sin 7rhRsUE s = l  

sin n3~hRsu3 
x . . .  exp {27rihC~ 

sin ~'hR~u3 

×[rj + ( n l -  1)ul/2 + (n2-1)u2/2  

+ (n3-1)u3/2  + . . . ] }  (4a) 

gj = ~ exp 27rihCsrg (4b) 
$=1 

if j >  tp. 
The above results suggest that: (1) the number of 

independent atomic positions are only tp + tq. These 
positions will be the primitive random variables in 
our probabilistic approach; (2) the algebraic form of 
the structure factor assumes two different expressions 
according to whether j  _< tp o r j  > tp. Our probabilistic 
approach will take specific account of this fact. 

(c) If the reciprocal vector h is assumed to be fixed 
and the t~ + tq primitive random variables rj sweep 
the asymmetric unit of the cell, then the expected 
value of (IF~I E) is 

(IFhIE)= "y~:ff(lgjlE)=.= eu 8+  , (5) 

where 

k -~ sin 2 nlTrhRsUl sin 2 n27rhRsu2 
8 

s=l/'' sin2 7rhR~ul sin E 7thRonE 

sin E na'rrhRsua } 
X sine ~'hRsu3 "'" 

and eh is the statistical weight of the reflection h. If 
nl = nE = n3 ~-- 1 then no pseudotranslation occurs and 

(]FhIE) = eh(Y~,, m + 2 q )  = eh(Y~ + Y q) = eh Y~ N '  

which is the well known Wilson relationship. 
If h u - 0 ( m o d  1) then also - h u - = = 0 ( m o d  1). 

Therefore in the cs space groups (5) may be written as 
t m/2 

([ Fh[ E) : -  2eh ~ f f  E sine nl ~rhRsul 
j=~ s=~ sin2 7rhRsul 

sin E nE,n-hRsu E 
x sin2 7rhRsu2 "" "q-eh~'q' 

where s varies over the set of symmetry operators not 
related by the inversion center. 

(d) In order to have more insight into the above 
equations let us first consider the space groups P1 
and P1. If one pseudotranslation u of order n is 
present then 

sin E nTrhu 
(Pl)" (IFhlE)- sin2 7rhu ~ t + ~ q  

sin 2 nTrhu 
(Pi)" (]Fhl E) = 2 sinE 7rhu ~9 + E q • 

Since sin m r h u - 0  for every h, we have two cases of 
interest: 

(i) hu ~ 0(mod 1); then sin 2 nrrhu/sin 2 7rhu = 0 and 

(P1, Pi)" (IFhIE) = ~q ; (6) 

(ii) h u - 0 ( m o d  1); then sin 2 nTrhu/sin 2 7rhu= n 2 
and 

(P1): ([FhIE)=nE2, + ~  =n~,v+~,q (7a) 
p q 

(P1): (IfhlE)=2nE~,t +~,o=n~, q. (7b) 

The case (i) corresponds to superstructure reflections, 
for which (I Fh[ 2) <- ~N, the case (ii) to the substructure 
reflections for which ([Fhl 2) _ ~N. 

Let us now suppose that more than one indepen- 
dent pseudotranslation exist. Then, for the super- 
structure reflections, we obtain (6) again and for the 
substructure reflections 

(P l ) ,  (P l ) :  (]Fhl2)=(nln2n3...)y.p+~q. (8) 

It is worthwhile observing that the substructure reflec- 
tions are those that satisfy all the conditions h u i -  
0(mod 1) for every i. For example, if (pseudo F cell) 
ul = ( a / 2 + b / 2 ) ,  u 2 = ( a / 2 + c / 2 ) ,  then the substruc- 
ture reflections are the two parity groups with indices 
h, k, I all even or all odd. 
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The relation (9) 

(IFhl2) = e{nln2n3.. .  Y~v+ Y.q} (9) 

does not always hold for the substructure reflections. 
In a given space group (9) holds if 

hRsu-= 0(mod 1) for all s when h u -  0(mod 1). (10) 

However, condition (10) is not always verified. For 
example, in P4 when u = a/4, the expected average 
intensity of the substructure reflections calculated 
according to (5) agrees with the following table 

( h k l )  with h-=0(mod 4) (IFhl2)=EEp+Eq 
(h k l) with h--- 0(rood 4), k--  0(mod 4) 

(IFd2) =4Ep+Eq 
(0 0 l) (lEvi2) = 4(4 E~+ Eq). 

In that case (9) is a poor simplification of (5). 
(e) From the considerations made in § 2(c) it may 

be concluded that (5) may be written as 

(lEd 2) = e~( ~h Ep+ E ), ( 11 ) q 

where 

o~h= (nln2n3 . . . )yh/ m 

and Yh is the number of times for which algebraic 
congruences 

hRsui= 0(mod 1) for i = 1,2,3,.. .  

are simultaneously satisfied when s varies from 1 to 
m. If 7h = 0 we say that Fh is a superstructure reflec- 
tion: then (1Fh[ 2) = e Y~q. Otherwise Fh is a substructure 
reflection. The maximum value of y is m; con- 
sequently the maximum value of a is nln2n3 . . . .  

The above definitions do not agree with but have 
several advantages over previous definitions given by 
other authors (Buerger, 1956, 1959; Jeffery, 1964; 
Taxer, 1981). Indeed, reflections are divided into two 
subsets according to whether their intensities are or 
are not influenced by the substructure. 

Details about this point can be found in a recent 
paper (Cascarano, Giacovazzo & Lui6, 1984). 

(f)  The normalized structure factor Eh is defined by 

Eu= Fh/ (IFhl~) '/2 (12) 
where (IFhl 2) is given by (11). The fact may be stressed 
that q < N atoms is the apparent content of the unit 
cell when superstructure reflections are normalized, 
while a~p + q ~ N is the apparent content of the cell 
involved in the normalization of the reflection h. The 
usefulness of this observation should be appreciated 
when the reliability of triplet relations will be esti- 
mated (Cascarano, Giacovazzo & Luir, 1985). 

(g) In accordance with B/Shme (1982), 
pseudotranslations in a crystal structure can be rec- 
ognized by the unequal distributions of the normal- 
ized structure factors if normalization has been 

executed without taking pseudotranslation effects 
into account. E '  will denote such pseudonormalized 
structure factors. If we correctly distinguish between 
substructure and superstructure reflections we can 
obtain estimates of the p and q values. Indeed we have 

(IEi, l:~)=(o,,,Ep+Y'.,,)lE,,,. (13) 

If p and q atoms are supposed to have the same 
unitary scattering factor and the same temperature 
factor then (13) reduces to 

(IEhl 2) - ( ~ p  + q) /N ,  (14) 

from which 

q/N--((lE~,12)--ah)/(1--ah). (15) 

The averages are calculated by allowing h to vary 
over a statistically homogeneous (ah -- a ) set of reflec- 
tions, p / N  ( q / N )  is the percentage of electrons in 
the unit cell that can be considered to be affected 
(not affected) by the pseudotranslations. If ah-----0 
then (15) reduces to 

q/N"(lEi,12)s,p, (16) 

where h is allowed to vary over the set of superstruc- 
ture reflections. 

(h) When nothing isknown about the crystal struc- 
ture the number of primitive random variables (i.e. 
the atomic positions of symmetry-independent 
atoms) is correctly assumed to be equal to N / m .  
According to § 2(g), normalizing reflections in the 
usual way provides information about pseudotransla- 
tions if they exist. The identification of the 
pseudotranslations occurring in the structure leads to 
a new definition of the primitive random variables, 
which are now the tp + to positional vectors. The distri- 
bution of the new E's  will lose the centric or the 
hypercentric character and will approach the ncs or 
cs distribution according to whether the space group 
is ncs or cs respectively. 

(i) Real crystal structures usually do not exactly 
obey the mathematical model described in this paper. 
Often atomic positions roughly comply with (1'); 
sometimes pseudotranslated atoms have different 
atomic number. 

It should be concluded that the values of p and q 
found by our approach have only a statistical mean- 
ing. People working on direct methods usually con- 
sider Ne~ = (Y. Z2)3/(~., Z3) 2 as the 'effective' number 
of atoms in the cell. In the same way, p (and q) may 
be considered the corresponding 'effective' number 
of atoms that are (are not) affected by pseudotransla- 
tions. Thus Nen will replace N in (14)-(16). This 
point of view will prove useful when triplet relation- 
ships by structures having superstructure effects 
will be estimated (Cascarano, Giacovazzo & Luir, 
1985). 
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3. The normalization procedure 

Our normalization program has been modified to 
handle structures having pseudotranslational sym- 
metry. The number of different pseudotranslations 
having index n < 16 is 64 (the lattice translations 
included) provided in (1) ~[-< 4 for i= 1, 2, 3. The 
set of substructure reflections characterized by the 
condition 

hu = 0(mod I) (I 7) 

has been associated with each pseudotranslation. 
The seven different pairs and the unique triple of 

independent pseudotranslations of order two have 
also been considered. To each of them the set of 
substructure reflections characterized by the con- 
dition 

o r  

and 

h u l - 0 ( m o d  1) and hu2-= 0(mod 1) (18) 

h u l - 0 ( m o d  1) and hUE--0(mod 1) 

hu3 = 0(mod 1) (19) 

is associated according to whether two or three 
independent pseudotranslations are assumed to 
coexist. 

The indices of each reflection are analyzed in order 
to construct tables such as Tables 1, 2, where, for 
each of the 72 cases: 

(a) the number of reflections satisfying (17) or (18) 
or (19) is given and their average intensity ([E'12)a is 
calculated. In addition, the user can input one or 
more index relationships and obtain the correspond- 
ing statistics. 

(b) the values of p and q are calculated according 
to (15) and (16). In particular, (15) is calculated at 
maximum for two homogeneous sets of reflections 
having a ~ 1 and (16) is calculated for the set having 
c~ = 0. Such a procedure allows us to estimate q/N 
also when reflections having a = 1 do not exist (for 
example, in a pseudo-cubic F cell); 

(c) the figure of merit 

g = (I E'E[)a/([ E'E[)b (20) 

is calculated for each of the 72 cases. In (20) ([E'2l)a 
is the average intensity calculated for the set of reflec- 
tions (17) or (18) or (19), (IE'al)b is calculated for the 
complementary set. The maximum value of (20) is 
expected to indicate the true pseudotranslational 
symmetry. 

A new Wilson plot and renormalized structure fac- 
tor E according to (12) are calculated. The simplest 
Wilson plot is given by 

o +  o lg{(lFhl2>/(ahr,, Y.q>}=-2Bs2-lgg. (21) 

On the assumption that 

(O~h ~'0 + ~'0~, ~ ~ '0 
l.d p g., q / /.., N 

for every shell, (21) should produce the same B and 
K values provided by the usual Wilson method. In 
that case the E 's  can be directly obtained according 
to 

IE.12=IE;12E°/(OLh E° +E°). (22) 

It is often advisable (e.g. when p atoms are heavy 
and q atoms are light) to refine simultaneously the 
temperature factors of the p and q atoms separately. 
Then a non-linear iterative least-squares procedure 
may be adopted (for an analogous approach, valid 
when a partial structure is known, see Parthasarathy, 
1966; Gould, van den Hark & Beurskens, 1975), 
according to which the quantity to be minimized is 

£ (G-Gv-Gq) 2, 
shells 

where 

G=<lFhl2> 

Gp = Kah £~ exp (-2Bps 2) 
0 Gq = K Eqexp (-2Bqs2). 

The parameters to be refined are K, Bp and Bq. 
It is worthwhile observing that we do not normalize 

super- and substructure reflections separately as done 
by B6hme (1982). The separate normalization was 
the consequence of the separation of p(r) into pp(r) 
and p(r) - pp(r), which allowed the author to provide 
an empirical scheme for weighting the reliability of 
the various types of triplets. The probabilistic theory 
for triplet phase relationships to be described in the 
next paper (Cascarano, Giacovazzo & Lui6, 1985) 
exempts us from using the separate normalization of 
super- and substructure reflections. 

4. Experimental tests 

Our normalization procedure has been tested over a 
large number of random equal-atom structures show- 
ing different kinds of pseudotranslational symmetry. 
The correct symmetry was always identified via (18) 
and accurate estimates of q/N were also provided 
(13% has been the maximum error in our tests). In 
Fig. 1 the cumulative distributions of z = [El 2 and 
z '=  IE'I 2 are compared with the theoretical cs and 
ncs Wilson distributions for a random P2 structure 
characterized by 

p = 4 0 ,  q=30 ,  u = ( a + b ) / 4 .  

The program estimates are n = (a+b) /4 ,  p, q =39.2, 
30.8. The curve N(z') in Fig. 1 has a centric character 
while N(z) reveals the non-centrosymmetric nature 
of the space group. 
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Table  1. A non-real P2 structure (20 C1, 20 O, 50 C)" the average ([E[ 2) for 72 sets of reflections 

The program indicates the correct pseudotranslation by a double arrow. 

number <E**2> number <E**2> number <E~2>  
I )  a l l  = In  5322 1.000 2) h = 2n 2635 .969 3)  k = 2n 2656 1.868 << 
4) 1 = 2n 2662 .988 5) h+k+l = 2n 2661  .992 6) h+k = 2n 2665 .959 
7) h+l = 2n 2667 .992 8) k+l = 2n 2680 .983 9) h = 3n 1747 .966 

10) k = 3n 1764 .862 11) 1 = 3n 1768 .954 12) h+k = 3n 2961 1.059 
13) h+l  = 3n 1778 .984 14) k+ l  = 3n 2974 1.037 15) h+k+l  = 3n 2956 1.032 
16) h+k+21 = 3n 2974 1.015 17) h+2k+l = 3n 2956 1.032 18) 2h+k+l = 3n 2974 1.015 
19) h+2k = 3n 2961 1.059 20) h+21 = 3n 1760 1.012 21) k+21 = 3n 2974 1.037 
22) 1 =: 4n 1316 .978 23) k = 4n 1313 3.105 24) h = 4n 1296  .915 
25) h+k = 4n 2009 .65 ]  26) h+l  = 4n 1333 1.010 27) k+ l  = 4n 2013 .686 
28) h+k+l = 4n 2010 .714 29) 2h+2k+l = 4n 1335 .961 30) 24+k+21 = 4n 1332 1.864 
31) h+2k+21 = 4n 1316 .956 32) 2h+k+l = 4n 2008 .683 33) h+2k+l  = 4n 1337 1.001 
34) h+k+21 = 4n 2005 .667 35) h+2k = 4n 1306 .911 36) h+21 = 4n 1318 .954 
37) k+21 = 4n 1335 1.842 38) 2h+k = 4n 1338 1.817 39) 2h+I = 4n 1331 .966 
40) 2k+l  = 4n 1336 .970 41) 3h+3k+I = 4n 1994 .717 42) 3h+k+31 = 4n 2010 .714 
43) h+3k+31 = 4n 1994 .717 44) h+2k+31 = 4n 1325 1.058 45) h+3k+21 = 4n 2005 .667 
46) 3h+k+21 = 4n 2005 .667 47) h+3k ~ = 4n 2009 .651 48) h+31 = 4n 1345 1.036 
49) k+31 = 4n 2013 .686 50) 3k+2l' = 6n 878 1.779 51) 2k+3l = 6n 884 .940 
52) 2h+3k =: 6n 871 1.796 53) 3h+2k = 6n 867 .824 54) 3h+21 = 6n 881 .924 
55) 2h+31 = 6n 873 .938 56) 2h+2k+31= 6n 1475 1.020 57) 34+2k+31= 6n 887 .827 
58) 3h+3k+21= 6n 891 .916 59) 4k+31 =12n 436 .916 60) 4h+31 =12n 423 .886 
61) 4h+3k =12n 436 2.940 62) 3k+41 =12n 431 2.969 63) 3h+4k =12n 428 .740 
64) 3h+41 =12n 434 .983 

65) h = 2n & k = 2n 1317 1.803 
66) h = 2n & I = 2n 1321 .949 
67) k = 2n & l = 2n 1338 1.833 
68) h = 2n & k+l = 2n 1327 .945 
69) k = 2n & h+l  = 2n 1331 1.850 
70) 1 = 2n & h+k = 2n 1333 .940 
71) h+k= 2n & h+l  = 2n 1345 .935 
72) h=2n & k=2n ~ l=2n 665 1.751 

The  p r o c e d u r e  has  b e e n  tes ted  also for  u n e q u a l -  
a t o m  structures .  The  r isk was tha t  s t ructures  wi th  
p s e u d o t r a n s l a t i o n a l  s y m m e t r y  b e t w e e n  two a toms  
wi th  di f ferent  a t omic  n u m b e r s  Z1 and  Z2 respec t ive ly  
s h o u l d  be  i n t e r p r e t e d  as p r o d u c e d  by an e q u a l - a t o m  
s u p e r p o s i t i o n  s t ructure  (Tak6uchi ' s  subs t ruc ture )  
wi th  an i n t e r m e d i a t e  Z fac tor  (see Fig. 2). In  Table  
1 the  stat ist ical  analysis  over  the  72 classes o f  reflec- 
t ions  is g iven  for  a r a n d o m  P 2  s t ructure  wi th  N = 90 
(20 C1, 20 O, 50 C). Whi l e  C a toms  are r a n d o m l y  

1.0 
N ( Z )  . ..~ . . . . . .  ~ ' - "  

.A'" 0...0~ 

o//: d' 
0.5 

/ E o for z=lE? 
/ /  , for z=lEl' 
o t ~ c e n t r o s y m m e t r i c  

. . . .  . n o n -  c e n t r o s y m  m e t r i c  / 

/ 
t 

o Z 
I I I I 
1 2 3 4 

Fig. 1. Cumulative distributions for a non-real equal-atom P2 
structure with tp = 5, tq = 15, u = (a + b)/4, before and after renor- 
malization, compared with theoretical cs and ncs distributions. 

d i spe r sed  in the  cell, two  s y m m e t r y - i n d e p e n d e n t  C1 
are r e l a t ed  by  u = b/2 .  H a l f w a y  b e t w e e n  t h e m  an  O 
a t o m  is l o c a t e d  in o rde r  to s imula te  the  p s e u d o t r a n s l a -  
t iona l  s y m m e t r y  u = b / 4  (see Fig. 2i). Our  p r o c e d u r e  
correct ly  f inds u = b / 2  (our  R figure o f  mer i t  is 13.70 
for  k = 2n a n d  9.92 for  k = 4n ref lect ions)  in  spi te  o f  
the  fact  tha t  (JE'J2)k=4n is m u c h  larger  t h a n  (IE'12)k=2n . 
The  o the r  p a r a m e t e r s  we chose  for  the  s t ruc ture  were  

Nen"(j=~Z])3/(j~=N Z3)2=48"87 

(p /N)ee  = =0"80 .  
J J 

Our  p r o c e d u r e  ca lcula tes  p~ N = 0.87. 
The  large  v a l u e  o f  R for  k = 4n  suggests  the  addi -  

t iona l  p r e s e n c e  o f  the  p s e u d o t r a n s l a t i o n  u = b /4 .  In  
this case the  p r o c e d u r e  calcula tes  for  p~ N the  va lue  
0.69, w h i c h  c o r r e s p o n d s  to the  Tack6uch i  substruc-  

AAAA, 
Cl 0 CI 0 

(i) 

,AAAA,  
Fig. 2. (i) Translational symmetry with u = b/2 relating C1-CI and 

O-O atoms. A pseudotranslational symmetry with u -- b/4 is also 
present relating C1-O atoms. (ii) Tak6uchi's superposition 
structure. 
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Table 2. Freieslebenite: the average <IEI 2) for 72 sets of reflections 

The program indicates the correct pseudotranslation by a double arrow. 

I )  a l l  = 
4) I = 

7) h+ l  = 
I 0 )  k = 
13) h+ l  = 
16) h+k+21 = 
19) h+2k = 
22) l = 
25) h+k = 
28) h+k+ l  = 
31) h+2k+21 = 
34) h+k+21 = 
3 7 )  k+21 = 
40) 2 k + l  = 
43) h+3k÷31 = 
46) 3h+k+21 = 
49) k+31 = 

52) 2h+3k = 
55) 2h+31 = 
58) 3h+3k+21= 
61) 4h+3k 
64) 3h+41 

number < E * * 2 >  

i n  2000 1.000 2) 
2n 1006 1.057 5) 
2n 996 1.031 8) 
3n 631 2 ,022  11) 
3n 662 .970 14) 
3n 1129 .803 17) 
3n 1128 .835 20) 
4n 496 1,051 23) 
4n  7 6 8  . 7 0 7  2 6 )  

4n  7 6 4  . 9 8 9  2 9 )  
4n 508 2 . 4 0 2  32) 
4n 772 ,680 35) 
4n 4 9 2  .958 38) 
4n 506 1.084 41) 
4n  7 5 8  . 9 7 9  4 4 )  
4n  7 7 2  . 6 8 0  4 7 )  
4n  7 6 0  . 9 6 4  50) 
6n 323 .949 53) 
6n 323 1.104 56) 
6n  3 4 5  . 8 9 6  5 9 )  

=12n 151 .842 6 2 )  

=12n 169 1.593 

number <E**2> 
h = 2n 1026 1.665 3) k 
h+k+ l  = 2n I010 .990 6) h+k 
k + l  = 2n  1 0 0 8  . 9 8 6  9 )  h 
1 = 3n 671 .976 12) h+k 
k + l  = 3n 1126 .810 15) h+k+1 
h+2k+ l  = 3n 1121 .787 18) 2b+k+ l  
h+21 = 3n 654 .964 21) k+21 
k = 4n 458 .923 24) h 
h+ l  = 4n 4 8 8  1.024 27) k + l  
2h+2k+ l  = 4n 506 1.070 
2h+k+ l  = 4n  7 5 8  .965 

h+2k = 4n 512 1.664 
2h+k = 4n 510 .852 
3h+3k+ l  = 4n 758 .979 
h+2k+31 = 4n 510 1.000 
h+3k = 4n 7 6 8  .707 
3k+21 = 6n 325 . 9 2 6  
3h+2k = 6n  339 3 . 6 8 4  << 
2 h + 2 k + 3 1 =  6 n  5 7 0  . 8 8 3  
4k+31 =12n 157 2 .057  
3k+41 =12n 153 .852 

65) h = 2n & k = 2n 514 1.543 
66) h = 2n & 1 = 2n 514 1.749 
67) k = 2n & 1 = 2n 496 1.004 
6 8 )  h = 2n  & k = 2n  5 2 2  1 . 6 3 0  
69) k = 2n & h+ l=  2n 492 .981 
7 0 )  l = 2n  & h + k =  2n  5 2 0  . 9 6 3  
71) h+k= 2n & h+ l=  2n 514 .933 
72) h=2n & k=2n & l=2n  262 1.593 

n u m b e r  <E**2> 
= 2n  9 7 8  . 9 6 0  
= 2n  1 0 2 4  .917 
= 3n  6 4 9  1 . 0 5 5  
= 3n 1128 .835 
= 3n 1121 .787 
= 3n 1129 .803 
= 3n 1126 .810 
= 4n  5 1 2  1 . 6 8 5  
= 4 n  7 6 0  . 9 6 4  

30) 2h+k+21 = 4n 484 .966 
33) h+2k+ l  = 4n 500 1 ,012 
3 6 )  h + 2 1  = 4n  5 0 8  1 . 6 1 8  
39) 2h+ l  = 4n 492 1.051 
42) 3h+k+31 = 4n 764 .989 
4 5 )  h + 3 k + 2 1  = 4n  7 7 2  .680 

48) h+31 = 4n 490 1.027 
51) 2k+31 = 6n 313 2 .107  
54)  3h+21 = 6n 343 1.631 
57) 3h+2k+31= 6n 313 2.081 
60) 4h+31 =12n 159 1.079 
63) 3h+4k =12n 171 3 .685  

ture described in Fig. 2(ii). Indeed 

(p/N)e~= E (fo +fo)2/2 E f~ = 0"70. 

In § 2(h) it has been pointed out that real crystal 
structures usually do not show 'exact' pseudotransla- 
tional symmetry. In order to introduce such a situ- 
ation in our model we shifted every second C1 atom 
along the b axis by 0.4/~.  Even if corresponding 
Patterson peaks were not resolved, the statistics 
proved to be affected. Our procedure finds n = b/4 
(our R figure of merit is 3-38 for k = 4n and 1-96 for 
k = 2n reflections) with (p/N) = 0.58. The outcome 
agrees well with the observation that the additional 
translation of 0 .4 /~  degrades the pseudotranslation 
u = b/2 more efficiently than u = b/4 (see Fig. 2). 

The outcome of our procedure for a real structure 
[Freieslebenite; Ito & Novacki (1974); PbAgSbS, 
space group P2~/a, Z = 4] is shown in Table 2 and 
in Fig. 3. Our procedure correctly identifies the pres- 
ence of two pseudotranslations; u~ = a/2 and u2 = b/3 
relating atoms of different types (Sb, Pb, Ag) and 
calculates (p/N)e~=0.55, which is a reasonable 
value. In Fig. 3 it may be seen that after renormaliz- 
ation the N(z) curve loses the hypercentric character 
and approximates quite well the cs distribution. 

5. Concluding remarks 

The mathematical model of non-crystallographic 
pseudotranslational symmetry described in this paper 
cannot give a full account of all the situations that 
can occur in real crystals [see Cascarano, Giacovazzo 

& Lui6, (1984) for a detailed analysis]. However it 
seems a reasonable tool for handling the statistical 
properties of diffraction intensities. It is worthwhile 
mentioning that information on the presence and the 
nature of pseudotranslational symmetry can be 
directly obtained by a qualitative inspection of the 
Patterson map. If a partial interpretation of the map 
reveals the positions of some atoms then the full 
structure may be recovered by methods such as those 
described by Karle (1970), Beurskens, Prick, Does- 
burg & Gould (1979), Main (1976) and Giacovazzo 
(1983). 

1.0-  

N ( Z )  

0 . 5 ,  

~ A...~-.---'~"-~ 0 o o 

o_T_ ~>~ .~.~ o 
o .s 
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o ~ 

o / &  
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o/4,,' A / o f o r  z=IET 
o ~ f o r  z = I E I  ~ 
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. . . .  non-centrosymmetric 

Fig. 3. Cumulative distribution for Freieslebenite before and after 
renormalization, compared with theoretical cs and ncs distribu- 
tions. 
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If a partial structure is not available because: (1) 
the Patterson synthesis is not calculated; (2) the map 
is calculated but it is difficult to solve; (3) a light-atom 
structure is studied; then the mere information on 
the pseudotranslational symmetry may be used in 
order to normalize the structure factors correctly. 
In the second paper of this series (Cascarano, 
Giacovazzo & Lui6, 1985) the same information 
will be used in order to estimate triplet invariants. 

A P P E N D I X  

It is well known that 
ri--1 

Y. sin (x +/cy) 
k=0 

=sin [x + ( n -  1)y/2] sin [ny/2]/sin [y/2], 

(A.1) 

n--1 

X cos (x+ ky) 
k=0 

= cos Ix + (n - 1)y/2] sin [ny/2]/sin [y/2]. 

(A.2) 

From (A.1) and (A.2), (A.3) follows: 
tp rl--I 

Fph = Y~ fj X exp 2~rih(rj + vu) 
j = l  v----0 

_ -sinn~hu ~fjexp2,rr ib  r j + n - l u .  (A.3) 
sm ~rhu j--1 2 

From (A.3) the following factorization rule follows: 
nt-1 n2-1 

X exp 27rih(rj + vlul +/,/282) 
v l = 0  v2----0 

nt--1 n2--1 

= ~ exp (27rihvlul) ~ exp 2~rih(rj + •2u2) 
v t =0 v.2=0 

(n21)] sin n27rhu 2 exp 2~nh u2 
- sin "n'hu 2 T 

nt--1 

x • exp 21rih(rj +/]1Ul) 
Vl=0 

sin nllrhul sin n2~llll2 

sin ~rhul sin ~hu2 

xexp 2~rih[rj +½(n, -  1)ul +½(n2-1)u2]. 
(A.4) 
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Abstract 

Additional information of various kinds on the struc- 
ture, such as 'atomicity', noncrystallographic sym- 
metry, known molecular boundaries, nonnegativity 
of the electron density and so forth, may be described 

0108-7673/85/060551-06501.50 

by an equation p = z[p] or by the corresponding 
system of equations for structure factors. To use this 
information, one tries generally to solve the 'phase' 
part of the structure-factor equations by simple iter- 
ations. The complete system of equations can, 
however, be used for phase refinement if the latter is 
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